
Container Challenges:
Know Before You Deploy

Scott Lowe
Blog: http://blog.scottlowe.org • Twitter: @scott_lowe

Github: https://github.com/lowescott • Life: Colossians 3:17

Before we begin

• DO: Ask questions! Audience participation is requested and
encouraged.

• DO: Take pictures and post updates to the social media service of
your choice.

• DON’T: Forget to silence your electronic devices.

About me

• An IT professional with 20+ years of experience in the industry
• An author or co-author on 7 books
• A lifelong geek with a passion for technology
• A blogger (visit my site at http://blog.scottlowe.org)
• A first-time Interop speaker and attendee! (Can you believe it?)
• A VMware employee (but not speaking for VMware)

• Setting the stage
• Reviewing non-technical challenges
• Reviewing technical challenges
• Q&A

Agenda

Setting the stage

• Leverages Linux kernel features (cgroups, namespaces)
• Depends on copy-on-write mechanisms for fast deployment and

reduced resource usage
• Provides an developer-friendly CLI
• Uses a simple, easy-to-understand language
• Enables easy sharing of images to enable and encourage

collaboration

Quick overview of Docker

• “Run any app anywhere”
• “They’re like lightweight VMs”
• “Docker will replace <insert configuration management tool here>”
• “Docker will eliminate need for <insert hypervisor name here>”

Some common misconceptions

Reviewing non-technical
challenges

• You may end up building (and maintaining) your own tools to make
Docker work in your environment
• Spotify had to build Helios
• New Relic had to build Centurion and Shipright
• Shopify had to build ejson

• Make sure you don’t try to “boil the ocean,” focus on an
achievable goal

Managing project scope

• Deploying Docker means new skills are going to be needed
• Most of these are non-Docker skills:

• Orchestration tools
• Consensus mechanisms
• Service registration and discovery
• Application architectures

Staff readiness

• Who will own Docker images?
• Who will own the Dockerfiles?
• How do you provide traceability from running container all the way

back to Git commits in the source code?
• If you still have issues between Dev and Ops, Docker isn’t going to

magically fix them

Organizational and/or
operational changes

Reviewing technical
challenges

• Container filesystem disappears when the container exits
• Docker volumes can help, but are not a first-class citizen in the

ecosystem (refer to https://groups.google.com/forum/#!msg/
docker-dev/5R9ag4UwUb8/WHnYy_L4Fy8J)

• Mounting paths on the host works, but containers are now tied to
the host

• Using host paths shifts the problem, but doesn’t fix it

Persistent storage

• Docker (via docker logs) only captures STDOUT and STDERR
• Writing to log files could be an issue (refer to persistent storage

concerns)
• Running a logging agent inside the container forces you to go the

multi-process container route
• Alternately, you can re-architect your application to use STDOUT

and STDERR

Logging

• Single-process containers are viewed as “the Docker way” of
doing things

• You’ll need to go the multi-process route if you want logging
agents, monitoring agents, etc. in the container

• Multi-process involves some sort of supervisor process
(supervisord, runit, or others) managing the “real” application
process(es) in the container

Single-process vs. multi-process

• Containers (especially single-process containers) do reduce the
attack surface

• Containers don’t provide comprehensive isolation (SELinux and
AppArmor can help)

• Consider using VMs as a security boundary
• None of the security challenges are insurmountable, but you do

want to be sure to consider them

Security

• How does the application handle logging? Can it be changed?
• How does the application handle signals?
• Does the application work as expected when PPID=1?
• What are the upstream and downstream dependencies for this

application?

Deep application knowledge
necessary

• No good solution for networking across containers right now
• Docker is working on pluggable network subsystem
• OVN (Open Virtual Network) might be a good fit, but still in

development
• A form of SDN or network virtualization is pretty much a given
• Some networking decisions/architectures will be driven by the

orchestration tool

Container networking

• You’ll need an orchestration tool or you’ll have to do static
orchestration

• Orchestration tools are still relatively young (Mesos is at version
0.22, Swarm is at version 0.2.0, Kubernetes is at version 0.14.2)

• Orchestration tools require additional complexity (etcd, Consul,
service registration and discovery)

• If static orchestration, how will you automate it?

Orchestration

• Will you run shared services on the host (logging, monitoring, etc.),
or in the containers?

• Running them in the containers increases image size, memory
footprint, CPU usage, forces multi-process approach

• If running them outside the container, how will you manage them?
(you’re still going to need something to manage container hosts)

Shared services

Questions & Answers

Thank you! We’re outta here!
Scott Lowe

Blog: http://blog.scottlowe.org • Twitter: @scott_lowe
Github: https://github.com/lowescott • Life: Colossians 3:17

