

But My 802.11n Is Only 2 Years Old

Matt Williams
Assistant Director, Networking
Bucknell University

Disclaimer

- All observations, opinions, and suggestions herein are my own and based on my environments and experiences.
- All environments are different. There are no cookie cutter design solutions.
- I'm not a spokesman for any particular vendor, though some names will inevitably come up.

Introduction

- About me
 - Matt Williams
 - Veteran of the US Army
 - I've been at Bucknell University for 5 years
 - I have no social life

Bucknell University

At a glance...

- America's largest private liberal arts university
 - ~3,500 resident students
 - ~1,400 faculty and staff
 - Three in the Networking Group
- Approximately 90 buildings
- One of the priciest universities in the country
- Division I athletics

Bucknell's WLAN Background

- 2010
 - Began 3 yr. 802.11n project
 - Phase 1
 - 1:1 replacement of a/b/g APs
 - Located in academic spaces and res. hall lounges
 - Approx. 300 APs
 - » High density APs weren't available (not that it would have mattered)

- 2011
 - Phase 2
 - Residence hall room coverage
 - Added about 300 additional APs
 - Started seeing two wireless devices per user

Bucknell's WLAN Background

- 2012
 - Phase 3
 - Fill any coverage gaps
 - Ended up adding another 250 APs
 - Up to three wireless devices per user

Bucknell's WLAN

Intent

- Hallway deployment
 - Easy physical access
- Designed for max coverage
 - Specifically 2.4GHz coverage
 - Specifically for laptops
- Minimize capital costs

Consequences

- Aggressive roaming from clients
 - Specifically Macs

Device Events

1-3 of 3 Device Eve	nts Page 1	▼ of 1 Reset filters	hoose columns Export CSV				
Time ▼	Type w	Source Device ¥	AP/Device ▼	Severity *	Facility *	Category *	moved from AP
7/11/2013 8:30 PM	Syslog	host	-	Debug	local1 (17)	Station Management	Jul 11 20:29:39 2013 Aruba3600 stm[1539]: <501065> <dbug> <aruba3600 192.168.1.3=""> Client 00:23:6c:90:05:11 moved from AP survey125 to AP AP-125-Mesh-Point</aruba3600></dbug>
7/11/2013 8:24 PM	Syslog	host	-	Debug	local1 (17)	Station Management	Jul 11 20:22:49 2013 Aruba3600 stm[1539]: <501065> <dbug> <aruba3600 192.168.1.3=""> Client 00:23:6c:90:05:11 moved from AP AP-125-Mesh-Point to AP survey125</aruba3600></dbug>
, ,	-,,	host	-	Debug	local1 (17)	Station Management	Jul 11 20:21:19 2013 Aruba3600 stm[1539]: <501065> <dbug> <aruba3600 192.168.1.3=""> Client 00:23:6c:90:05:11 moved from AP survey125 to AP AP-125-Mesh-Point</aruba3600></dbug>

1-3 of 3 Device Events Page 1 of 1 Reset filters

Interop.com @Interop 💕 #Interop

Consequences

- AP line of sight
 - Constant Tx power changes
- Can't support high number of client devices
 - AP saturation
 - New coverage gaps
- Massive frustration

802.11n Project Summary

- No good deed goes unpunished
- A lot of capital expense
 - And constant "gap filling"
- A ton of operational expense
- 802.11ac to the rescue?

How do we fix this?

- Option 1:
 - Utilize controller features
 - · Band steering
 - Data rate limit enforcement
- Option 2:
 - Replace existing APs with high density APs
- Option 3:
 - Select a different vendor or product
- Option 4:
 - Complete Redesign

Redesign Considerations

- Do we have an accurate view of the RF environment?
- Do you have different requirements for different physical spaces?
 - Academic spaces vs. residence halls
 - Faculty/staff vs. student requirements
 - Sales floor vs. shipping/receiving
 - Dining area vs. register area
- How does 802.11ac fit in?

Site Surveys

- Most buildings are old
 - Block or poured concrete walls and floors
 - Brick exterior
- Right way and wrong way (in my opinion)
 - Some background on this
- Wrong way
 - Doing them when clients aren't around
 - If Designing not placing the AP near it's installation location
- Right way
 - Do them during peak usage times!
 - If Designing get a rig... better yet, get 2 or three

Balancing Requirements

- How do we support a reasonable quality of life for students?
 - Video streaming, gaming, presence apps, access to campus resources, etc.
- How do we support our faculty research and staff requirements?
 - Access to ERP, wireless IoT research/sensor networks, AirPrint and AirPlay, etc.
- How do we do that while supporting the explosion of wireless devices on campus?
- Outdoor WLAN coverage

How does 802.11ac fit in?

- Is it worth it to adopt Wave 1?
- Should we limp along until Wave 2 is released?
- Should we just redesign with 802.11n and redesign it again when the next evolution of 802.11 comes out?
- How will ac affect my wired environment?
- What about 802.11ad?

802.11ac

802.11ac Propaganda

- Wave 1
 - 1.3Gbps
 - 3 Spatial Streams
 - 20, 40, and 80 MHz channels
- Wave 2
 - 6.93 Gbps
 - 4 Spatial Streams
 - MU-MIMO
 - 20, 40, 80, 80+80, and 160 MHz channels

802.11ac Considerations

- Wave 1
 - Political aspect of being an early adopter
 - Negligible cost between 802.11n and ac Wave 1 products
 - Better chipsets and performance for 802.11n clients on ac Wave 1
 - 5GHz attenuation
 - Wired infrastructure implications
 - Do we really need two uplinks to each AP?
 - Do I need new switches with PoE+ and 10GbE uplinks?
 - What does that do to my campus distribution switches?

802.11ac Considerations

- Wave 2
 - 160 MHz channels deplete number of channels available
 - Wired infrastructure implications
 - How many wires will be needed?
 - 10Gbps to the AP?
 - What about switch uplinks?
 - When will we see client devices that use 4 SS?

Where We Are Today

- Design decisions
 - Benchmark -65 dBm on smartphone or other handheld device
 - Move APs out of the hallway and into rooms
 - Adopt 802.11ac in academic spaces
 - Support various research initiatives by faculty
 - 802.11ac APs support higher device densities
 - Continue with 802.11n in residence halls
 - Smaller cells reduce associations per AP
 - Repurpose older 802.11n APs elsewhere (\$\$\$\$)

INTEROP New York

INTEROP New York

Where We Are Today

- Infrastructure decisions
 - No new wiring in buildings scheduled for renovations in the next 2 years
 - Reuse existing wiring where possible
 - Install 2 6a station wires in all new locations
 - All new switches are PoE+
 - 24-port switches
 - Switches supporting 802.11ac have 10GbE uplinks (but are currently connected at 1GbE)
 - All others have 1GbE uplinks

Where We Are Today

- Installation decisions
 - 802.11ac APs
 - Connect both uplinks at the AP, but only 1 to the switch
 - It's easier to turn on the second port in the closet.
 - 802.11n APs
 - Installing them over existing wall plates... for now.
 - All students have 2 wired ports
 - » One for "Voice", but still Cat6
 - » One for "Data"
 - We'll steal the old "Voice" cables for APs if we need to move them
 - Repurpose as much technology as possible
 - Makes clients happy
 - Saves cash

My Observations

- Design for what you want out of your network
 - Put 802.11ac in places where it makes sense
- Design for 5GHz at -65 on the device with the crappiest antenna you can find.
- Install infrastructure to aid expansion
 - Pull two wires the first time. It's cheaper that way, even if you don't use it.
 - Try to reuse wiring where possible
 - Deploy switches that make sense for your design
 - 10GbE uplinks sound good, but...

Lessons Learned

- Stop deploying in hallways
 - Controller software can't mitigate physical construction
 - Work with facilities and be prepared for questions
 - More and more concern about long term affects of Wi-Fi
 - Have a plan in place if there are complaints
- I don't know what the future holds, but...
 - WLAN spectrum use has been cyclical
- Ignore marketing hype
 - You won't see 1.3Gbps from Wave 1 or 6+Gbps from Wave 2
 - You likely won't need 10GbE switch uplinks anytime soon
- All environments are different and you need to account for that

Questions?

